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SUMMARY

In migrating neurons, the centrosome nucleates and
anchors a polarized network of microtubules that
directs organelle movements. We report here that
the mother centriole of neurons migrating tangen-
tially from the medial ganglionic eminence (MGE)
assembles a short primary cilium and exposes this
cilium to the cell surface by docking to the plasma
membrane in the leading process. Primary cilia are
built by intraflagellar transport (IFT), which is also
required for Sonic hedgehog (Shh) signal transduc-
tion in vertebrates. We show that Shh pathway
perturbations influenced the leading process mor-
phology and dynamics of MGE cells. Whereas Shh
favored the exit of MGE cells away from their tangen-
tial migratory paths in the developing cortex, cyclop-
amine or invalidation of IFT genes maintained MGE
cells in the tangential paths. Our findings show that
signals transmitted through the primary cilium pro-
mote the escape of future GABAergic interneurons
from their tangential routes to colonize the cortical
plate.

INTRODUCTION

Neuronal migration is a directional process achieved by periodic

translocation of the cell body within a long thin exploring pro-

cess. We and others have described two main steps in the cell

body translocation (Solecki et al., 2004; Bellion et al., 2005;

Schaar and McConnell, 2005; Tsai et al., 2007): first, the endo-

membrane system (endoplasmic reticulum, ER, and Golgi appa-

ratus, GA) and the centrosome (CTR) move forward during a

resting phase of the nucleus, and second the nucleus trans-
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locates to the rostral cytoplasmic swelling comprising the

CTR/GA complex. The CTR is a microtubule-organizing center

(MTOC) that usually lies between the leading edge and nucleus

of cells showing directed migration (Rakic, 1972; Ueda et al.,

1997). In migrating neurons, the CTR is located at the base

of the leading neurite and anchors an array of microtubules

(MTs)—the so-called perinuclear cage- that binds the nucleus

and CTR and directs nuclear movements toward the CTR (Rivas

and Hatten, 1995; Higginbotham and Gleeson, 2007). However,

the nucleus can precede or transiently overtake the CTR in

migrating neurons (Umeshima et al., 2007; Distel et al., 2010),

showing that the control of cell directionality is an integrated

and complex process that moreover requires MT stability (Bau-

doin et al., 2008).

An important function of the CTR, which has recently been

re-emphasized, is the capacity to differentiate a primary cilium

(Christensen et al., 2008; Louvi and Grove, 2011). The primary

cilium is a small protrusion at the cell surface assembled and

maintained at the distal end of the mother centriole by the intra-

flagellar transport (IFT) machinery (Rosenbaum and Witman,

2002). The primary cilium functions as an antenna to probe

and integrate extracellular signals, especially morphogens and

growth factors, to control cell proliferation, cell differentiation,

and cell migration (Breunig et al., 2008; Han et al., 2008; Spassky

et al., 2008; Schneider et al., 2010). Primary cilia are present in

interphasic neural stem cells in embryonic and adult brain as

well as in adult differentiated neurons (Cohen et al., 1988; Fuchs

and Schwark, 2004; Arellano et al., 2012). Mutations of IFT

proteins compromise primary cilium assembly and are associ-

ated with pleiotropic disorders including mental retardation

and ataxia in humans (Lee and Gleeson, 2010). Although studies

in animal models confirm that IFT plays important roles in

brain neurogenesis and morphogenesis through impaired Shh

signaling (Breunig et al., 2008; Han et al., 2008; Spassky et al.,

2008; Willaredt et al., 2008; Gorivodsky et al., 2009; Stottmann

et al., 2009; Besse et al., 2011), the role of IFT in controlling neu-

ronal migration is unknown. Whether immature neurons have
.
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a functional primary cilium is uncertain (Louvi and Grove, 2011;

Arellano et al., 2012). We have examined this issue in neurons

migrating tangentially from the medial ganglionic eminence

(MGE) of the basal telencephalon to the cerebral cortex in which

they differentiate as cortical GABAergic interneurons. MGE cells

first migrate tangentially to the brain surface in the cortical

primordium either in the marginal zone or deep in the interme-

diate zone. Then they colonize the cortical plate (CP) by reorient-

ing their trajectories from tangential to radial or oblique (Tanaka

et al., 2003; Yokota et al., 2007). MGE cells successively

encounter and interact with different cell types, in contrast to

the principal radially migrating cortical neurons that follow a

unique support, the radial glia fiber.

In the present study, we analyzed the dynamic behavior of the

CTR in migrating MGE cells. Four-dimensional (4D) reconstruc-

tions revealed putative contacts between the centrioles and

the cell surface. Electron tomography analysis of the centroso-

mal region in fixed MGE cells showed that the mother centriole

could attach to the plasma membrane by a short primary cilium,

in particular when located at a long distance in front of the

nucleus. Once the mother centriole was anchored to the plasma

membrane, centrosomal MTs were positioned on one side of

the leading process. We next asked whether a signal originating

at the primary cilium could influence MGE cell migration. MGE

cells invalidated forKif3a that encodes a subunit of themolecular

motor which drives anterograde IFT required for Shh signal

transduction (Rosenbaum and Witman, 2002; Han et al., 2008)

showed abnormal distributions in vivo, especially in the tan-

gential migratory streams of the developing cortex. Time-lapse

video microscopy recording revealed that invalidation of Kif3a

or Ift88, another gene required for anterograde IFT in primary

cilium (Haycraft et al., 2007), prevented MGE cells from leaving

the deep tangential migratory stream to colonize the CP. This

defect was mimicked by cyclopamine treatment and associated

to increased clustering of MGE cells whose leading processes

oriented parallel to each other. In contrast, Shh promoted CP

colonization. Altogether, these results suggest that Shh signals

transmitted through the primary cilium of MGE cells favor direc-

tional changes necessary for their ultimate targeting to the

cerebral cortex.

RESULTS

The Mother Centriole of Tangentially Migrating MGE
Cells Docks to the PlasmaMembrane by a Short Primary
Cilium
By correlating observations in fixed preparations and live cell

recording, we had previously proposed a sequence of centroso-

mal movements associated to the migratory cycle of MGE cells

(Bellion et al., 2005; Métin et al., 2008). Here, we analyzed the

dynamic behavior of the centrioles in MGE cells migrating on

dissociated cortical cells (Figures 1A–1C and see Figures S1A

and S1B available online). MGE cells coexpressedGFP that filled

the whole cell body and the PACT domain of pericentrin fused

to the mKO1 fluorophore (Konno et al., 2008). As expected, in

a majority of recorded MGE cells (66%, n = 33), the CTR first

moved far away from the stationary nucleus and then the nucleus

quickly translocated near the CTR (Figure 1A). Interestingly, 4D
Ne
(x, y, z, time) reconstructions and modeling of cell and centriole

shapes showed that the CTR transiently reached the MGE cell

surface during forward migration (Figure S1B and Figure 1B).

Putative contacts were not correlated with CTR stabilization

(stars in Figure 1C) suggesting that membrane-bound centrioles

still moved forward.

We further investigated the relationships between the centri-

oles and the plasma membrane by electron microscopy obser-

vations in the centrosomal region of MGE cells at different stage

of the migration cycle. MGE cells migrating on cortical axons

were sectioned parallel to the plane of migration (Figures 1D1

and 1D2). Semithin sections comprising both the CTR and the

nucleus were analyzed using high-resolution electron tomog-

raphy (Koster et al., 1997). In a large proportion of cells with

long nucleus to CTR distances the mother centriole identified

by the presence of lateral and/or distal appendages was associ-

ated to the plasma membrane by its distal end (Figures 1E–1F2

and 1L; 21 cells out of 33). A third of these cells had a short

primary cilium that protruded from the mother centriole into the

extracellular space. This primary cilium contained an axoneme

(Figures 1F1 and 1F2 and Movie S1) and was often less than

500 nm in length, shorter than the primary cilium found on fully

differentiated neurons of adult brains (Fuchs and Schwark,

2004; Arellano et al., 2012). The plasma membrane around the

primary cilium often formed a thickened asymmetric depression

(Figure 1F1).

The Primary Cilium Assembles in a Golgi-Derived
Vesicle
Mother centrioles located in the leading process often associ-

ated with the plasma membrane. In contrast, centriole pairs

located in the perinuclear compartment positioned deep within

the cytoplasm (Figures 1G–1I, 1L, S1C, and S1D). There, the

mother centriole associated with a large distal vesicle, either

round or flattened (Figures 1H and 1I and Movie S2). A short

axoneme could protrude from the mother centriole within the

vesicle lumen (Figure 1I, black arrow heads). The single large

vesicle was sometimes replaced by a row of small vesicles

attached to the tip of mother centriole distal appendages

(Figure S1D). Pioneer studies (Sorokin, 1962; Cohen et al.,

1988) already reported that the ciliogenesis likely starts with

the assembly of a centriolar vesicle into which the axoneme

elongates. The centriolar vesicle of MGE cells could engulf

smaller vesicles (Figure 1H and Movie S2), attesting to vesicu-

lar trafficking toward the centriolar vesicle. Accordingly, we

noticed a continuum of small vesicles between the neighbor-

ing Golgi cisternae and the large centriolar vesicle (Figure 1I,

white arrow heads). To obtain further insight into ciliogenesis

related vesicular trafficking in migrating MGE cells, we exam-

ined the distribution of GMAP-210, a cis-Golgi protein that

traffics toward the basal body in ciliated cells (Rı́os et al.,

2004) and that associates with IFT20 (Follit et al., 2008), a

component of anterograde IFT particles. The cis-GA, as deco-

rated by GMAP-210 antibodies, extended to the CTR, which

was not the case for the median GA (Figures 1J and S1E1–

S1E3). A GMAP-210 positive Golgi compartment remained

associated to the CTR after brefeldin treatment that redis-

tributed the Golgi to the ER but not after MT destabilization
uron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc. 1109



Figure 1. The Mother Centriole of Migrating

MGE Cells Associates with a Primary Cilium

and Docks to the Plasma Membrane in the

Leading Process

(A–C) The centrosome (CTR, red) positions alter-

natively close to the cell surface in the leading

process and deeper in the perinuclear compart-

ment during the migration cycle. A illustrates the

sequence of migration of a MGE cell coexpressing

EGFP (green) and the centrosomal marker PACT-

mKO1 (red). Elapsed time on frames is in minutes.

In (B), panels show frontal sections through a 4D

model of the cell at the level of the CTR (white

arrowheads in A). Curves in (C) represent instan-

taneous displacements of the CTR (pink), nuclear

front (gray), and nuclear rear (black). Putative

contacts of the CTR with the plasma membrane

are indicated by red stars in (B) and (C). Scale bar

in (A), 10 mm; (B), 1 mm.

(D1–I) Subcellular localization of centrioles in

migrating MGE cells. Scanning electron micro-

graph in (D1) and enlarged view in (D2) show MGE

cells migrating on cortical axons with recognizable

nuclear compartment (D2, arrows) and cyto-

plasmic swelling (D2, arrow heads). (E) and (G) are

low-magnification views of transmission electron

micrographs of MGE cells with either long (E) or

short (G) nucleus to CTR distance. Dotted squares

localize the centrosome analyzed by electron

tomography and illustrated by slices from 3D

reconstructions in (F1 and F2) and (H), respec-

tively. (I) is a slice from an additional 3D recon-

struction. In (E–F2), the mother centriole (MC)

docks to the plasma membrane by its distal end

in a differentiated region (F1, white arrow) and

associates with a short primary cilium (cil.). The

MCand daughter centriole (DC) anchorMTs (m). In

(G–I), the MC associates by its distal end with

a large centriolar vesicle (CV) in which a primary

cilium can form (I). Numerous vesicles distribute

between the Golgi apparatus (GA) and the CV

(I, white arrowheads). Small vesicles can fuse to

the large CV (H, white arrowhead). Ax, axoneme; n,

nucleus; white star, nuclear pore. Scale bars in (E)

and (G), 2 mm; (F2), (H), and (I), 200 nm.

(J) A cis-Golgi compartment immunopositive for

GMAP-210 (green) colocalizes with the CTR

labeled with g-tubulin antibodies (red). Enlarged

views of the centrosomal region (dotted rectangle)

are shown at right. Scale bar, 10 mm.

(K) An interpretative scheme of cis- and median

GA labeling in migrating MGE cells.

(L) Quantification of CTR subcellular localization in

migrating MGE cells. The MC most often docks

to the plasma membrane (red/orange bar) when

located more than 2 mm away from the nucleus.

When locatedcloser to thenucleus (less than2mm),

the MC preferentially positions in the cytoplasm

(black/gray bar; distributions significantly different

by Khi2 test, p < 0.01) and associates with a CV.

See also Figure S1, Movie S1, and Movie S2.
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(Figures S1F1–S1G2). GMAP-210 thus identified a cis-GA

compartment tightly associated with the CTR in a MT depen-

dent manner (see scheme in Figure 1K). The primary cilium of

MGE cells likely assembles in a Golgi-derived vesicular com-
1110 Neuron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc
partment associated with the mother centriole by the interme-

diate of MTs. This Golgi-derived vesicle should fuse to the

plasma membrane (Sorokin, 1962; Cohen et al., 1988) to posi-

tion the primary cilium at the cell surface.
.



Figure 2. Centrosomal and ExtracentrosomalMTs inMigratingMGE

Cells with Long Nuclear-Centrosomal Distance

(A–F) Electron tomography analysis of MT organization in the centrosomal

region. Rectangles in transmission electron micrographs of semithin sections

(A and D) indicate regions reconstructed by electron tomography and illus-

trated by slices from 3D reconstructions (B and E). Models of 3D recon-

structions are shown in (C) and (F). The MC and DC are represented as yellow

and red cylinders, respectively. When MTs end less than 50 nm from

a centriole, they take the same color as the centriole. Green MTs pass along
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Ne
The CTR Anchors a Variable Subset of MTs
The CTR nucleates and anchors MTs (Bornens, 2012). The

number of centrosomal MTs anchored to the centrioles was

significantly higher when the mother centriole was attached to

the plasma membrane rather than positioned within the perinu-

clear cytoplasm (17.7 ± 1.5 anchored MTs against 5.5 ± 1.1,

p < 0.001, n = 15 cells; compare Figures 1Hand 1I and Figure 2B).

In similar cocultures prepared for immunostaining, the MT

minus-end protein ninein (Baird et al., 2004; Bellion et al.,

2005) was detected at the CTR in only a fraction of migrating

MGE cells (39%; Figure S2A), attesting that the number of MTs

attached to the CTR varied during the migration cycle. A large

proportion of MTs reconstructed in the centrosomal region

passed alongside the two centrioles without interruption in their

vicinity (Figures 2A–2F; 80%± 7.6%of the 87MTs reconstructed

at the rear of the centriole pair in 5 cells; see Movie S3). Thus,

a number of MTs does not attach to any centriole in MGE cells,

in agreement with g-tubulin immunostaining that identified the

nuclear rear and the rostral swelling as extra-centrosomal sites

of MT nucleation (Figure S2B). Since MTs anchored on the

centrioles were oriented in majority to the leading edge (Fig-

ure 2G), nuclear translocations likely proceed by forward move-

ments along MT bundles comprising extracentrosomal MTs,

which extend between the perinuclear compartment and the

rostral cytoplasmic swelling (Figures S2C–S2E).

Our ultrastructural observations in combination with immuno-

staining experiments support the hypothesis that ciliogenesis,

CTR subcellular positioning, and centrosomal MT network orga-

nization are tightly linked and dynamically regulated during the

migration cycle of MGE cells (summarized in Figure 2H). The

number of MTs anchored to the centrioles should increase

when the mother centriole is docked to the plasma membrane

but should decrease as the mother centriole re-positions in the

perinuclear cytoplasm. The morphology of the GA is moreover

influenced by the MT organization in the centrosomal region

since most ninein immunopositive MGE cells presented an

elongated GA (Figure S2A). We thus examined whether signals

transmitted through the primary cilium could influence the MT

organization, the GA conformation, and the migratory behavior

of MGE cells.
the centriole pair without interrupting, or end at a distance from centrioles

(white arrowheads in C). The plasma membrane is shown in white. The MC

docks to the plasma membrane and anchors MTs on lateral appendages (ap).

Numerous MTs in the vicinity of the centriole pair do not end on a centriole.

Scale bars: (A) and (D), 2 mm. le, leading edge; n, nucleus; sw, swelling.

(G) Histogram shows the preferred orientation of MTs anchored to centrioles

located more than 2 mm ahead of the nucleus. Error bars denote SEM.

(H) Interpretative scheme illustrates 4 steps in the migration cycle of MGE

cells. During nuclear resting phase (1–3), the centrioles move forward. The

MC (yellow) associates with a large distal vesicle occasionally comprising

a primary cilium (1, 2). At a distance from the nucleus (n), the MC docks to

the plasma membrane and exposes the primary cilium at the cell surface (3).

After nuclear translocation along MT bundle comprising extracentrosomal

MTs (4), the centrosome removes from the plasma membrane and the primary

cilium disappears or internalizes. ‘‘+’’ are MT plus-ends, ‘‘�’’ MT minus-ends.

The GA, initially folded around the CTR, unfolds along MTs during forward

movement.

See also Figure S2 and Movie S3.

uron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc. 1111



Neuron

Primary Cilium in Tangential Migration
Shh Agonists and Antagonist Influence the Leading
Process Morphology in Opposite Ways
MGE cells are generated in the basal forebrain under the control

of Shh (Xu et al., 2005) and later migrate in the marginal and

intermediate zones of the cortex that expresses Shh at low

level (Komada et al., 2008). In vertebrate cells, Shh signal is pro-

cessed in the primary cilium by a mechanism involving Smooth-

ened (Smo) translocation to the ciliary membrane (Huangfu et al.,

2003; Huangfu and Anderson, 2005). We checked that MGE

cells migrating either in brain embryo or on dissociated cortical

cells or on laminin assemble an adenylate cyclase 3 (AC3)

positive primary cilium (Bishop et al., 2007; Sedmak and Wolf-

rum, 2010; Figure S3). Primary cilium length depended on

the substratum of migration (compare Figures S3A and S3F).

We first verified that SAG (Smo AGonist) application induced

Smo immunoreactivity in the primary cilium of MGE cells (Fig-

ure S3E). We then analyzed the response of MGE cells migrating

on laminin to Shh and observed unexpected morphological

changes in response to the application of agonists (Shh, SAG)

and antagonist (cyclopamine) of the Patched1(Ptch)-Smo path-

way (Figures 3A–3C2). In cyclopamine treated cultures, MGE

cells presented significantly shorter leading processes than in

control and in Shh treated cultures (Figure 3C1). MTs could

organize in short and thick bundles (Figure 3C2). MTs in the

leading process of MGE cells exposed to Shh or SAG often

formed a tight bundle in front of the nuclear compartment

(opened arrowheads in Figure 3B). MT bundles in Shh treated

MGE cells were significantly tighter than in control MGE cells

(Figure 3C2; t test, p = 0.033). According to our observations

linking the GA morphology to the MT network organization,

agonists and antagonist of the Ptch-Smo pathway induced GA

conformation changes (Figures 3D–F2). Shh increased the fre-

quency of cells with folded GA whereas cyclopamine increased

the frequency of cells with fragmented GA (Figure 3F1). More-

over Shh prevented the GA from entering the leading process

and maintained AKAP450, a scaffold protein of the cis-Golgi

that links the centrosome (Takahashi et al., 1999) in the perinu-

clear compartment (Figure 3E, bottom raw). Similar GA transfor-

mations were observed in MGE cells that migrated on cortical

cells (Figure 3F2). Shh signal thus influenced the organization

of the MT cytoskeleton and of the endomembrane compartment

in MGE cells.

Kif3a Invalidation Impairs MGE Cell Distribution In Vivo
To analyze the consequence of abnormal primary cilium function

on the cortical distribution of MGE cells in vivo, we generated

mice with Kif3a�/� MGE cells (noted Kif3a CKO) by crossing

Kif3afl/fl mutant mice (Marszalek et al., 2000) with Nkx2.1-Cre,

R26R-GFP transgenic mice whose MGE cells express the GFP

(Kessaris et al., 2006). Kif3a invalidation impairs anterograde

IFT required for cilium assembly and for the processing of Shh

signals in the primary cilium (Huangfu et al., 2003; Han et al.,

2008; Spassky et al., 2008). The basal telencephalon of Kif3a

CKO embryos did not show gross morphological abnormalities.

At E14.5 and E16.5, Nkx2.1 and Gsx2, two markers of ventral

telencephalon patterning (Xu et al., 2005) were expressed in

the same areas of both CKO and control embryos, showing

that Shh signaling disruption in the MGE at late embryonic stage
1112 Neuron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc
had poorly affected the patterning of the ventral telencephalon

when MGE cells started migrating (Figure S4). However, at

E13.5 and E14.5, the density of GFP(+) Kif3a�/� MGE cells in

the cortical tangential migratory streams of CKO embryos was

increased two-fold by comparison with the density of GFP(+)

Kif3a+/+ MGE cells in the cortical tangential migratory streams

of control embryos (Figures 4A–4C).

At birth, Kif3a�/� MGE cells had invaded the cortical primor-

dium but their cortical distribution was still abnormal compared

to control MGE cells, with increased density of GFP(+) Kif3a�/�

MGE cells in the intermediate zone (IZ) and CP (Figures

4D1–4E). Within the CP, cell bodies of Kif3a�/� MGE cells could

form radially elongated cluster or chains, which was not ob-

served in control newborn.

In young adults, the number of GFP(+) Kif3a�/�MGE cells was

decreased in the granular and supragranular layers of the pari-

etal cortex (Figures 5A and 5B). The dentate gyrus, the most

distant cortical structure from the MGE was severely depleted

in GFP(+) Kif3a�/� MGE cells (Figures 5C and 5E). Accordingly,

somatostatin (SST) positive interneurons were significantly less

numerous in this hippocampal area (Figure 5F). The number of

SST(+) interneurons was also decreased in the parietal cortex

(4 mutant brains, 83% of 4 control brains) and in CA1 and CA3

fields. However, differences missed to reach significance due

to irregular distribution of SST(+) interneurons in both control

and CKO brains. SST(+) cell bodies in the stratum oriens of

CKOs showed abnormal positioning, in agreement with a migra-

tion defect (Figure 5D, white arrows).

In Kif3a CKOs, the number of parvalbumin (PV) expressing

interneurons decreased in both supra- and infragranular layers

in all examined neocortical areas (Figures S5A–S5C; mean

decrease 68%, p < 0.01) but did not significantly change in the

hippocampus. Results in neocortex agree with previous anal-

yses in other models of Shh signaling loss (Xu et al., 2005). In

contrast, they differed from counting of GFP(+) MGE cells in

Kif3a CKOs (Figures 5B, S5D, and S5E). Since most PV(+) inter-

neurons originate in the MGE, this discrepancy could reflect

abnormal progenitor differentiation resulting from Shh signal

disruption (Figure S4; Xu et al., 2005, 2010).

Both Kif3a Invalidation and Ift88 Invalidation Alter the
Migration of MGE Cells to the Cortical Plate
Abnormal distributions of GFP(+) MGE cells in Kif3a CKOs

at embryonic, neonatal and adult stages were suggestive of

abnormal migratory properties of Kif3a�/� MGE cells. To further

characterize this defect, we performed time-lapse confocal

imaging of cortical slices from E14.5 Kif3a+/+, Nkx2.1-Cre,

R26R-GFP (control) and E14.5 Kif3a CKO embryos. In slices

from control embryos, numerous GFP(+) MGE cells located in

the deep tangential migratory stream at the start of the

recording session, migrated either to the CP or to the ventricular

zone (60% of tracked MGE cells; Figures 6A and 6B; see

Movie S4). In slices from Kif3a CKO embryos, the majority of

GFP(+) Kif3a�/� MGE cells located in the deep tangential

stream at the start of the recording session stayed migrating

within this flow (58% of tracked cells; Figures 6A and 6B; see

Movie S4). Although Kif3a�/�MGE cells were able to translocate

as fast as control MGE cells in slices (Figure 6C3) and in
.



Figure 3. Shh Agonists and Antagonist Influence MT Organization and GA Shape in Migrating MGE Cells

(A–C2) Migration on laminin. Panels in (A) compare the distribution of MGE cells around their explant (Exp) of origin after SAG (middle) or cyclopamine (right)

treatment. Panels in (B) illustrate the morphology at higher magnification of MGE cells immunostained with anti-tyrosinated tubulin (green) and anti-adenylate

cyclase 3 (AC3, red) antibodies. AC3 antibodies label the cytoplasm of MGE cells in addition to the primary cilium (white arrow head). AC3 labeling remains in the

perinuclear compartment of SAG treated MGE cells (middle panel, white arrow) but largely distributes in the leading process of cyclopamine treated MGE cells

(right panel, white arrow). (C1 and C2) Leading process length and thickness of MGE cells labeled with anti-tyrosinated tubulin antibodies were measured in

control (medium gray) and in cyclopamine- (Cycl., black), SAG- (light gray), and Shh- (white) treated cultures. Error bars denote SEM. See text.

(D) In migrating MGE cells, the CTR433 positive median GA either forms a ribbon folded around the CTR (1), or elongates between the nuclear compartment and

rostral swelling (2) or splits in fragments (3).

(E–F2) The shape and localization of the median GA (median row in E) is influenced by Shh and cyclopamine treatments. In Shh treated MGE cells, the AKAP450

positive cis-GA (bottom row in E) accumulates at one pole of the nucleus, whereas it can enter the leading process of control and cyclopamine treatedMGE cells.

(F1 and F2) Quantifications of GA shape shows that the GA is more frequently folded in Shh-treated MGE cells and more frequently fragmented in cyclopamine

treated MGE cells. Frequencies of the three classes of GA shape in treated cultures were compared to their frequencies in control cultures by a Khi2 test.

Statistical differences are indicated by stars above columns. Stars within colored areas indicate statistical differences between control and experimental values in

a single class of the distribution (Fisher test, p < 0.05). Scale bars: (B), 10 mm; (E), 5 mm.

See also Figure S3.
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cocultures (Figures S6A–S6C), their mean migration speed in sli-

ces was significantly reduced due to long and frequent stops

(Figures 6C1 and 6C2).
Ne
We then examined if MGE cells invalidated for Ift88 (Haycraft

et al., 2007) were impaired in their migratory behavior. GFP(+)

Ift88�/� MGE cells grafted in E14.5 organotypic cortical slices
uron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc. 1113



Figure 4. Kif3a Invalidation ImpairsMGECells Distribution in theCortical Tangential Migratory Streams andAlters theCortical Distribution of

MGE Cells at Birth

(A–C) Kif3a�/� MGE cells form denser cortical tangential migratory streams. Frontal forebrain sections in (A) compare the cortical distribution of GFP(+) Kif3a+/+

MGE cells in E14.5 Kif3a+/+; Nkx2.1-Cre; R26R-GFP control embryos (top) and the cortical distribution of GFP(+) Kif3a�/� MGE cells in E14.5 Kif3afl/fl; Nkx2.1-

Cre; R26R-GFP CKO embryos (bottom). Black and white panels are enlarged views of tangential migratory streams in the deep intermediate zone (IZ, arrow

heads) and in the superficial marginal zone (MZ, arrows). (B and C) Cell body counted with a confocal microscope in small areas in the deep tangential stream

(B, white boxes, 15 mm thick) revealed a two-fold increase in GFP(+) MGE cell density in Kif3a CKOs (white bar in histogram C; error bars denote SEM; t test,

p < 0.001).

(D1 and D2) Distribution of GFP(+) MGE cells in frontal forebrain sections from control (left) and CKO (right) newborns. Enlarged views (D2) of the median lateral

and posterior cortex show that the density of GFP(+) MGE cells is increased in both the MZ and cortical plate (CP) of CKOs. GFP(+) Kif3a�/� MGE cells distribute

radially in the CP.

(E) Fluorescence intensity was measured under a large line (yellow) perpendicular to the brain surface to assess the density of GFP(+) MGE cells. Curves were

normalized to MZ staining. In CKO brains (yellow curve) that had an enlarged peak of GFP staining in the MZ, the fluorescence intensity in the CP was thus

minored (dotted line in graphs indicates the limit between CP and IZ). Scale bars: (A), 500 mm; (B), 100 mm; (D2), 200 mm.

See also Figure S4.
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(Figure 6D) showed the same migratory defects as Kif3a�/�

MGE cells (Figures 6E–6I). Both mutant cells failed to efficiently

colonize the CP (Figures 6E, 6F, 6H, and S6E1–S6F; see Movie

S5) and showed more frequent stops (Figure 6G2). The trajecto-

ries of both Ift88�/� and Kif3a�/� MGE cells were more erratic

than those of control MGE cells (Figures 6F, 6I, S6B, and

S6D). Ift88�/� MGE cells exhibited frequent 180� to 360� turns

and occasional polarity reversals (Figure 6J). Both Ift88�/� and

Kif3a�/� MGE cells were thus less efficient than control MGE

cells to sustain directed migration and failed to colonize the

cortical plate.
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Kif3a–/– and Ift88–/– MGE Cells Show Abnormal
Orientation in the Deep Tangential Migratory Stream
MGE cells migrate to the CP along radial glial cells (Yokota et al.,

2007), blood vessels (Le Magueresse et al., 2012) and possibly

along corticofugal axons, as suggested by their oblique trajecto-

ries (Tanaka et al., 2003) and by contacts with growth cones in

the cortical SVZ (Métin et al., 2000). Several studies have shown

that MGE cells migrating tangentially in the developing cortex re-

orient from the deep and superficial tangential migratory streams

to the CP by neoforming side branches in front of the nucleus

(Martini et al., 2009; Lysko et al., 2011). We examined the
.



Figure 5. Kif3a Invalidation Alters the

Cortical Distribution of MGE Cells at Adult

Stage

(A and B) GFP(+) MGE cells were counted in

precisely located dorsal and lateral 1,000 mmwide

cortical sectors, on frontal sections at 3 ros-

trocaudal levels (see details in Figure S5). Brain

hemisections in (A) are from control (left) and

Kif3a CKO (right) young adults (P30–45). GFP(+)

Kif3a�/� MGE cells were significantly less

numerous in the supragranular layers of the adult

parietal cortex than Kif3a+/+ GFP(+) MGE cells

(B, median level). Histogram shows mean values;

error bars denote SEM.

(C–F) In adult CKOs, the number of GFP(+)

Kif3a�/� MGE cells was strongly reduced in the

dentate gyrus (DG: C and E). In hippocampus,

most somatostatin (SST) expressing cells (C, red

cells) were GFP positive. The number of SST(+)

cells was significantly decreased in the DG of

CKOs (F). Panels in (D) illustrate the change in

SST(+) cells positioning in the stratum oriens (so)

of control (top panel) and CKO (bottom panel,

white arrows) brains. Sp, stratum pyramidale; sr,

stratum radiatum. In (E) and (F), mean values are

shown as percentage of the mean control value.

Statistical differences in (B), (E), and (F) were

tested with the Mann-Whitney U test. Scale bars:

(A), 1,000 mm; (C), 500 mm.

See also Figure S5.
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morphology of kif3a or Ift88 invalidated MGE cells in grafted

cortical slices where MGE cell density allowed detailed mor-

phological analyses on large samples. The leading process of

both Kif3a�/� and Ift88�/� MGE cells was significantly more

branched than in control MGE cells (Figures 7A–7C) but showed

minimal changes in length (Figure 7D). Migrating MGE cells con-

tinuously produce branches at cell front and retract branches

not selected for nuclear progression (Bellion et al., 2005, Métin

et al., 2006; Martini et al., 2009). Kif3a�/� and Ift88�/� MGE cells

produced branches at the same rate as control MGE cells,

except a fraction of Ift88�/� MGE cells arrested under the CP,

which actively extended processes. Both eliminated slowly

nonselected branches. In Kif3a�/� MGE cells migrating on a

homogeneous substratum of cortical cells, the time life of tran-

sient branches was increased by 60% (Figure 7E). Alteration in

leading process remodeling was associated to minor defects

in centrosome positioning (Figures S7A–S7C) and did not favor

directional changes. In organotypic slices, grafted Kif3a�/� and

Ift88�/�MGEcells located in the deep tangential streamoriented

parallel to each other, tangential to the CP whereas grafted wild-

type MGE cells exhibited wider range of orientations compatible
Neuron 76, 1108–1122, De
with re-orientation toward the CP (Fig-

ures 7F1 and 7F2). InKif3aCKOembryos,

the leading processes of Kif3a�/� MGE

cells oriented parallel to each other, and

sometimes fasciculated on each other

(white arrow heads in Figure 7G). Simi-

larly, cultured Kif3a�/� MGE cells aggre-

gated in small clusters or fasciculated
on each other in vitro (Figures S7D–S7E2). They failed to reorient

on a parallel array of cortical axons, in contrast to wild-type MGE

cells (Figures S7F1–S7G).

Altogether, these results show that abnormal IFT alters the

capacity of MGE cells to select a novel direction of migration

by impairing dynamic reorganizations of the leading process

but minimally interferes with nuclear motility (Figures 6C3 and

S6C). Abnormal leading process dynamics is moreover associ-

ated to abnormal interactions between MGE cells.

Shh Signaling Influences MGE Cell Migration to the
Cortical Plate
Functional IFT is required for the normal processing of Shh

signals in the primary cilium (Huangfu et al., 2003; Louvi and

Grove, 2011). To confirm that the abnormal migratory behavior

of MGE cells invalidated for Kif3a or Ift88 resulted from abnormal

processing of Shh signals in the Ptch-Smo pathway, we exam-

ined the influence of agonists and antagonist on the distribution

of wild-type MGE cells grafted in cortical slices (Figures 8A1–

8C). In cyclopamine treated slices, wild-type MGE cells distrib-

uted in a narrow and deep stream tangential to the CP and
cember 20, 2012 ª2012 Elsevier Inc. 1115



Figure 6. Kif3a–/– and Ift88–/– MGE Cells Fail to Enter the Cortical Plate

(A) Cortical slices from E14.5 control (upper row) and Kif3a CKO (bottom row) embryos were imaged with a confocal microscope each 3 min. Confocal frames

acquired each 3 mm to a thickness of 30 microns were projected on a single plane to generate movies. Left panels are Z-projections of pictures from movies.

Numerous GFP(+) Kif3a+/+ (top) and Kif3a�/� (bottom) MGE cells migrate within the intermediate zone (IZ). Right panels show the trajectories of individual GFP(+)

MGE cells imaged in this deep flow during at least five consecutive frames. Trajectories were oriented to the cortical plate (CP, yellow), to the ventricular zone

(VZ, dark blue), or maintained within the intermediate zone/subventricular zone (IZ/SVZ, light blue).

(B) Kif3a�/� MGE cells migrated more frequently within the IZ/SVZ than Kif3a+/+ MGE cells.

(C1–C3) Compared to Kif3a+/+ MGE cells (black bars), Kif3a�/� MGE cells (white bars) showed reduced mean migration speed (C1) because of longer and more

frequent resting phases (C2). The dynamics of cell body movements was unchanged (C3).

(legend continued on next page)
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oriented parallel to each other (Figures 8A2, 8A3, and 8B),

mimicking the behavior of Kif3a or Ift88 invalidated MGE cells

(Figure 7). In Shh and SAG treated slices in contrast, MGE cells

largely scattered and reoriented radially toward the CP (Figures

8A2, 8A3, and 8B). Shh signals thus favored MGE cell exit from

the deep tangential migratory stream. MGE cell response to

Shh was IFT dependent since neither cyclopamine nor Shh

application modulated the density of Kif3a�/� MGE cells in the

CP of organotypic slices from Kif3a CKOs embryos (Figure 8F).

Both cyclopamine and Shh increased the proportion of

MGE cells with branched leading processes in grafted slices

(Figure 8C). The Shh phenotype involves a Ptch-Smo dependent

signaling mechanism since it was reversed by Ift88 invalidation

(Figure 8C, compare black, green and light green bars).

Perturbations of the Shh signaling pathway altered the direc-

tionality ofMGE cells, the time life of their processes, but not their

migration speed (Figures 8D1–8D3, S8A, and S8B and Movies

S7 and S8). Careful examination of movies showed that Shh

stabilized the trailing processes and associated to numerous

polarity reversals whereas cyclopamine increased the time life

of the leading process. Accordingly, cyclopamine increased

the time life of the rostral swelling that comprises the CTR/GA

complex whereas Shh did the opposite (Figures S8C–S8F).

These results agree with morphological changes of MGE cells

described above (Figure 3E).

Using immunostaining, Komada et al. (2008) had previously

shown that Shh is present in the developing cortex. Here, we

confirmed using in situ hybridization that Shh is already ex-

pressed in the IZ of the cortical wall at E14.5 (Figure 8E1), the

stage when MGE cells start to colonize the cortical plate. The

expression pattern of Shh is compatible with local and discrete

modulation of leading processes properties all along the migra-

tory pathway of MGE cells (Figure 8E2).

DISCUSSION

Our study shows that the mother centriole of tangentially

migrating GABA neurons assembles a primary cilium and docks

to the plasma membrane through this primary cilium. The

primary cilium of tangentially migrating GABA neurons is func-

tional and transduces local Shh signal that promotes GABA

neurons reorientation from tangential migratory streams toward

the cortical plate (CP). Using complementary geneticmodels, we

show that functional anterograde IFT is required for Shh depen-

dent reorientation of interneurons toward the CP during embry-

onic development and influences cortex colonization by GABA

neurons.
(D–J) Migration of Ift88�/� and Kif3a�/� MGE cells grafted in organotypic cortic

lectroporated with pCAG-EGFP and pCAG-Cre and grafted at the pallium/subp

Control explants were electroporated with pCAG-EGFP only (left panels in E and F

(E) or a confocal microscope (F). Panels in (E) are Z projections of movies. Panels

red trajectories started in marginal zone). (G1 and G2) Both Ift88�/� (gray bars)

longer resting phases (G2) than control MGE cells (black bars). (H) Both Ift88�

migratory stream instead of reorienting toward the CP or VZ. I. In both IZ and CP, t

andKif3a�/� cells was significantly reduced by comparison to control cells. (J) Ift88

differences between distributions (B and H) assessed as explained in Figures 3F

indicate statistical differences (t test).

See also Figure S6, Movie S4, and Movie S5.

Ne
It is established that the CTR controls the neuronal migration

through its MTOC function (Higginbotham and Gleeson, 2007).

In tangentially migrating MGE cells, the CTR anchors a MT

network distinct from extracentrosomal MTs. The centrosomal

array of MTs is reminiscent of the cage of perinuclear MTs

described in radially migrating neurons (Rivas and Hatten,

1995; Solecki et al., 2004; Tsai et al., 2007). Bundles of ex-

tracentrosomal MTs extend in front of the nucleus, as already

described in cerebellar neurons (Umeshima et al., 2007). This

MT organization into two networks should support quick

changes in the relative positioning of the CTR and nucleus and

should permit independent movements of the CTR toward

the plasma membrane, allowing fusion between the centriolar

vesicle and the plasma membrane. Plasma membrane docking

of the mother centriole should position the centrosomal network

of MTs on one side of the leading process, thereby influencing

cell directionality. Strong correlation between the subcellular

location of the mother centriole and its distance to the nucleus

suggests that the mother centriole is not permanently docked

to the plasma membrane during the migratory cycle. Rather,

the primary cilium is successively addressed and removed

from the cell surface by fusion/fission of the centriolar vesicle.

An important question for the future will be to understand how

the subcellular localization of the mother centriole during the

migration cycle is correlated to ciliogenesis and to trajectory

decisions.

The primary cilium of MGE cells varied in length depending

on the substratum of migration. Differences could result from

difference in adhesive interactions between MGE cells and their

migratory substratum since it has been shown that contact inter-

actions and the distribution of tension forces affect primary

cilium length in adhesive mammalian cells (Pitaval et al., 2010).

Differences could also result from change inmicrotubule stability

and in signaling pathway activity (Massinen et al., 2011). Indeed,

we have observed that MGE cells cultured in the presence of

agonists of the Patched1-Smoothened (Ptch-Smo) pathway

have longer primary cilia.

Another major finding of our study is that the primary cilium

of migrating MGE cells transduces Shh signal through a mecha-

nism involving the Ptch-Smo signaling pathway. Shh is ex-

pressed in the migratory pathway of MGE cells (Komada et al.,

2008 and this study). Smo immunostaining was observed in

the primary cilium of MGE cells cultured in the presence of Shh

or SAG, confirming a central role of the primary cilium in Shh

signaling. Kif3a�/� MGE cells, Ift88 �/�, MGE cells, and cyclop-

amine treated MGE cells showed similar migratory defects that

very likely resulted from impaired transduction of Shh signal in
al slices. (D) Small MGE explants from Ift88fl/fl or Kif3afl/fl embryos were coe-

allium boundary in E14.5 wild-type forebrain slices (right panels in E and F).

). GFP(+) MGE cells were imaged in slices with either a fluorescent macroscope

in (F) are pictures obtained as explained in (A) (same color code for trajectories,

and Kif3a�/� (white bars) MGE cells showed slower migration speed (G1) and
/� and Kif3a�/� MGE cells preferentially migrated within the deep tangential

he direction persistence (distance of displacement /trajectory length) of Ift88�/�
�/�MGEcells show frequent 180� to 360� turns. Scale bars, 200 mm. Statistical

1 and 3F2. Histograms show mean values, error bars denote SEM, and stars

uron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc. 1117



Figure 7. Kif3a or Ift88 Invalidated MGE Cells Grafted in Cortical Slices Show Alteration in Leading Process Morphology and Orientation

(A) Confocal pictures and drawing illustrate our simplified classification of MGE cells.

(B) Panels illustrate the distribution, orientation, and morphology of GFP(+) Ift88fl/fl MGE cells (electroporated with pCAG-EGFP, left panel) and of GFP(+) Ift88�/�

MGE cells (coelectroporated with pCAG-EGFP and pCAG-Cre, right panel) grafted in cortical slices. Nuclear staining (bisbenzimide, blue) reveals cortical wall

cytoarchitecture.

(C and D) Analyses in cortical slices show that Kif3a and Ift88 invalidation significantly increased the frequency of MGE cells with branched leading process.

(E) Branch dynamics in Kif3a�/� MGE cell. Time-lapse sequence illustrates the migration on E14.5 dissociated cortical cells of a Kif3afl/fl MGE cell co-electro-

porated with pCAG-EGFP and pCAG-Cre. Time is in hour/minute on frames. White arrows indicate transient branches, white arrowhead the trailing process.

Histogram on the right shows the mean increase in time life of leading and trailing processes in Kif3a�/� MGE cells. Errors bars in histograms (D) and (E)

denote SEM.

(F1 and F2) Leading process orientation of Ift88�/� and Kif3a�/� MGE cells migrating in cortical slices. (F1) NeuronJ software was used to calculate the angular

deviation of each leading process with regard to the cortical plate (CP) surface. Processes oriented radially to the marginal zone (MZ) have an angular deviation

of +90�. (F2) Polar plots show the frequency of leading process orientations. In the intermediate zone/subventricular zone (IZ/SVZ), the majority of mutant cells

oriented preferentially in the [�30�,+30�] range, whereas control MGE cells presented a wider range of orientations [�60�,+60�]. Distributions of preferred

orientations significantly differed in the �60�/90� range between control and mutant MGE cells (Khi2 test, p < 0.001). Stars indicate significant differences

between individual values in orientation distributions (Fisher test; p < 0.05).

(G) In the lower IZ of E14.5 control (top panel) and CKO (bottom panel) embryos immunostained with anti-calbindin (green) and anti-bIII-tubulin (red) antibodies,

calbindin positive cells of the CKO are closely parallel to each other. sp, subplate, vz, ventricular zone. Scale bars: (A), 20 mm; (B), 100 mm; (G), 50 mm.

See also Figure S7 and Movie S6.
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the primary cilium of migrating MGE cells. Although Shh func-

tions as a chemo-attractant for tangentially migrating SVZ cells

(Angot et al., 2008) and as a chemoattractant or -repellent for
1118 Neuron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc
growing axons (Charron et al., 2003; Sánchez-Camacho andBo-

volenta, 2009), neither clear attractive nor clear repulsive activity

of Shh on MGE cells was observed in organotypic slices. Rather,
.



Figure 8. Influence of Shh and Cyclopamine

on MGE Cell Migration in Brain Slices and

In Vitro

(A1–B) Wild-type MGE cells electroporated with

pCAG-EGFP and grafted at the pallium/sub-

pallium boundary in organotypic forebrain slices

(A1) distribute in a large and deep tangential

migratory stream after 24 hr in culture (A2, control

frame). In cyclopamine-treated slice, grafted MGE

cells form a tight stream (right frame in A2, pink bar

in A3; significantly narrower fit ellipse, p = 0.0024)

while they scatter in Shh treated slices (middle

frame in A2, green bar in A3, significantly larger fit

ellipse, p = 0.044). Analysis of leading process

orientation (as explained in Figure 7F1) reveals

that MGE cells orient preferentially tangential to

the cortical plate (CP) in cyclopamine treated

slices (B, pink curve significantly different from

black control curve by Khi2 test, p = 0.001) and

more often radially in Shh and SAG treated

slices (B, green curves significantly different from

black control curve by Khi2 test, p = 0.013 for Shh,

p < 0.001 for SAG).

(C) Morphological analyses similar to those

illustrated in Figures 7A and 7C show that both

cyclopamine and Shh treatment significantly

increase the proportion of MGE cells with a

branched leading process (percentages of cells in

classes IIa and III significantly increased at the

expense of class I, Khi2 test, p < 0.001).

(D1–D3) Shh application on MGE cells migrating

on dissociated cortical cells (D1) induces frequent

changes of MGE cell direction. The direction

persistence is significantly decreased (D2, green

bar). Both Shh and cyclopamine strongly increase

the time life of MGE cell processes (D3).

(E1 and E2) In situ hybridization of forebrain

section with an antisens probe shows low Shh

expression in the intermediate zone (IZ) of the

cortical wall at E14.5 (E1). At higher magnification

(E2), the DIG reaction product (blue) labels cell

bodies (black arrows) in the IZ and upper sub-

ventricular zone (SVZ), a few cells at the top of the

marginal zone (MZ, black arrow) and radially

oriented cell bodies and processes in the ventric-

ular zone (VZ).

(F) Pictures are Z-projection of 20 confocal planes

acquired each 1 mm in the cortical wall of forebrain

slices from E14.5 control (upper row) and Kif3a

CKO (lower row) embryos. Slices were collected at

the same rostrocaudal level and cultured in control

condition (left) or in the presence of either cy-

clopamine (middle) or Shh (right). Cyclopamine

prevented GFP(+) Kif3a+/+ MGE cells from en-

tering the CP (upper middle panel), whereas Shh

promoted CP colonization by MGE cells (upper

right panel). GFP(+) Kif3a�/� MGE cells (lower

panels) did not change their CP distribution in

response to cyclopamine or Shh and formed a

dense tangential migratory stream (accolade).

Stars in (C) show the significance level of Khi2

test; stars in (A3), (D2), and (D3) show the signifi-

cance level of t test (error bars in histograms

denote SEM). Scale bars: (A2), 200 mm; (E1),

500 mm; (E2 and F), 100 mm.

See also Figure S8, Movie S7, and Movie S8.
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the primary cilium controlled the migration of MGE cells in a

context dependent manner and facilitated MGE cell reorienta-

tion. Functional IFT prevented MGE cells to fasciculate on

each other suggesting that signals transmitted through the

primary cilium mediate repulsive interactions between migrating

MGE cells and/or promotes adhesive interactions with other

cells. It is established that future interneurons are maintained

by CXCL12/CXCR4 mediated attractive interactions in their

tangential cortical routes (Stumm et al., 2003; López-Bendito

et al., 2008; Lysko et al., 2011). From early developmental

stages, however, some neurons leave the tangential migratory

streams to enter the CP (Tanaka et al., 2003). Shh signal in the

developing cortex promotes this process. Although interactions

between migrating MGE cells and cortical axons are poorly

documented in vivo (Métin et al., 2000; Pinheiro et al., 2011),

our results suggest that Shh signal could orient the migration

of MGE cells toward the cortex along corticofugal axons or radial

glia. Abnormal orientation of migrating MGE cells along these

guiding structures might be responsible for the decreased

number of Kif3a�/� cells that we observed in the supragranular

layers of the parietal cortex.

In conclusion, our study establishes that the CTR of long

distance tangentially migrating GABA neurons regulates the

migration of these neurons by gathering in a same area the GA

through its cis-compartment, centrosomal MTs, and signaling

pathways associated to the primary cilium. Shh signals trans-

duced by the primary cilium prevented the aggregation of MGE

cells in the cortical tangential migratory streams and helped

MGE cells to leave tangential streams and to re-orient toward

the CP, thereby acting to maintain an optimal density of MGE

cells in the cortical primordium. We thus identified the primary

cilium and the associated CTR as a signaling center able to

convert extrinsic signals intomorphological changes to influence

cell movements. The mechanism(s) by which Shh signal influ-

enced the organization of the MT cytoskeleton and the subcel-

lular distribution of the endomembrane system in the leading

process of MGE cells, is unknown. This cellular response to

Shh signal has never been described previously. It nevertheless

provides a cellular basis for better understanding the defects in

long distance neuronal migration associated with mutations in

centriolar (Endoh-Yamagami et al., 2010) or basal body proteins,

the so-called BBS proteins (Tobin et al., 2008). It should help

to further analyze abnormal cognitive functions associated to

defects in primary cilium structure or function.
EXPERIMENTAL PROCEDURES

Detailed description of methods in Supplemental Experimental Procedures.

Mice

Mice from the following strains were used at embryonic or adult stage: Swiss

(Janvier, France), Kif3afl/fl, Ift88fl/fl, and Nkx2.1-Cre; Rosa26R-GFP (or YFP).

Our experimental procedures were reviewed and approved by the Regional

Ethic Committee for Animal Experiment.

Electron Microscopy

Cultures prepared on plastic coverslips were fixed, embedded in araldite, con-

trasted and sectioned in semithin sections. Sections were used to acquire

tomography series with an energy-filtered transmission high-voltage electron
1120 Neuron 76, 1108–1122, December 20, 2012 ª2012 Elsevier Inc
microscope. Tomogram reconstruction and 3D models were performed with

Etomo and IMOD softwares (Boulder University).

Cultures and Videomicroscopy

MGE explants electroporated with expression vectors (pCAG-EGFP, pCAG-

Cre, pCAG-PACT-mKO1) were cultured on laminin, on dissociated cortical

cells, or on cortical axons. They were imaged with an inverted epifluorescence

microscope or with an inverted microscope equipped with a spinning disk,

using either a 340 or a 363 immersion objective. Organotypic slices from

transgenic mice, and organotypic slices from wild-type mice grafted with

MGE explants were cultured in Millicell chambers (Merck Millipore) and

imaged with an epifluorescence macroscope (Olympus) or with an inverted

microscope equipped with a spinning disk and a320 long distance objective.

Pharmacological treatments were applied in the culture medium: Shh

(N-Ter, R&D Systems, 2.5 mg/ml), SAG (Smo agonist, Calbiochem, 10 mM),

or cyclopamine (Sigma-Aldrich, 2mM).

Immunohistochemistry and In Situ Hybridization

Floating sections from embryonic or adult brains were immunostained with

antibodies against GFP, parvalbumin, somatostatin, Nkx2.1, Gsx2, or AC3.

Cultures were immunostained with antibodies against tubulin, gtubulin, cis-

GA (GMAP210, AKAP450), or median GA (CTR433). MT plus- and minus-

ends were revealed with EB1 and ninein antibodies.

Shh ISH was performed on floating sections from embryonic brains.

Softwares for data acquisition and analyses, see Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures, eight movies, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2012.10.027.
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